Idaho National

Laboratory

FAST and Asset-Level Data Reporting Lessons Learned and Insights

Ron Stewart • Idaho National Laboratory

We'll cover...

- FY 2017 fleet data call overview and status
- Asset-level data reporting: what we've learned
- Fleet insights: new ways we can look at the fleet
- Looking forward…
- Discussion / Q&A

FY 2017 Fleet Data Call Overview

- 39 of 49 reporting Federal agencies submitting per-vehicle data
- Remaining 10 agencies submitted aggregated fleet data
 - 1 large agency fleet
 - 2 medium agency fleets
 - 7 small agency fleets
- 90% of Federal fleet covered in new data shape
 - Approximately 650,000 vehicles and their data
- Dataset not yet final
 - Several agencies still working on initial submission
 - DOE feedback to agencies may result in updates

ALD: Lessons Learned - Validation

- Flagging business rules will all be evaluated
 - Thresholds / ranges evaluated to make sure they are actually flagging outliers.
 - Flagging too much?
 - Not flagging things they should?
 - Tune how / when rules are applied:
 - Some rules apply only to vehicles in fleet entire year?
 - Some rules may need to be more specific: ranges based on vehicle type rather than class?
 - Elevate flagging rules to block clearly invalid data?
- A few areas where we will look to revise blocking rules
- We (all) need additional ways of exploring flagged data in FAST

ALD: Lessons Learned - Process

- Simpler approaches worked better
 - Simpler reporting hierarchy
 - Fewer people involved in data cleaning, issue resolution, and submission
- Effort associated with data cleanup was significant
 - Starting earlier made a big difference
 - Evaluation of both data and processes was important
- Approach this year will help determine ease vs. pain next year
 - Factoring of data corrections into MIS data (and processes)
 - Process and tool changes to minimize pain points

ALD: Lessons Learned - Data Issues

- Use of license plate # for vehicle identifier
 - Not permanent and immutable!
- Groups of "identical" vehicles
 - Example: 13 vehicles in a fleet that are identical in all regards except vehicle identifier (VIN)
 - Vehicles with the same vehicle ID (e.g., VIN) reported in multiple agencies, none of which show as disposal?
- Consistency of cost reporting
- Consistency of EPAct exemption designations
- Issues with vehicle mileage and fuel consumption
 - Reporting annual miles vs. odometer reading?
 - Fuel units matter!
 - Tracking electricity consumption in vehicles?

ALD: Insights

- Caveat: partial and preliminary dataset
- Looking at "the fuel coding issue"
- Very diverse fleet (we knew that)
 - ... now we can quantify "how diverse?"
- Some examples of new ways of looking at the fleet

ALD: Insights - Inconsistent Fuel Data

- Long-recognized "fuel coding issue"
 - Inconsistent fuel types based on vehicle fuel type/configuration
 - Example: DSL fuel consumed in GAS/ELE PH vehicle
- Largely swallowed up in older aggregated reporting method
- Problem with coding at the pump?
 - ... or in data handling within purchasing systems?
 - … or in data entry?
 - ... or in fleet MISs?
 - ... something else?
- FAST management team decided to accept and flag inconsistent fuel consumption
 - Challenge for DOE/GSA/EIA: use of invalid data?
 - Work with agencies to better understand scope and cause of issues

ALD: Insights - Inconsistent Fuel Data

- Data from 37 agencies
 - 556,500 vehicles
 - 853,500 fuel entries
 - 298M GGE fuel
- At the Federal level:
 - 21 of 37 agencies have vehicles with inconsistent fuel consumption
 - 39,700 vehicles (7.1% of all vehicles)
 - 42,539 fuel records (5.0% of all fuel records)
 - 3.6M GGE (1.2% of all fuel volume)
- At the agency level
 - 0.1% 15.6% of vehicles with inconsistent fuel
 - 0.1% 10.0% of fuel records
 - 0.0% 9.3% of fuel volume

ALD: Insights - A Diverse Fleet

- 31 different vehicle types
 - Vehicle counts/type range from 1 to over 160,000
- 150 different combinations of vehicle type + fuel type/configuration
- 170 different vehicle makes
 - 1 to over 235,000 vehicles/make
- Vehicle location:
 - 5% foreign
 - 7% domestic and location withheld
 - 25% domestic by ZIP code (over 7,100 different ZIP codes)
 - 63% domestic by lat/long (over 22,100 distinct locations)

ALD: Insights – A diverse fleet

Inventory Parameter	Min	Median	Mean	Max
Model Year	1938	2010	2006	2018
GVWR	500	5,200	7,451	100,000
Months in Service	1	88	136	772
Miles	0	5,042	6,654	136,907
Fuel Consumption (GGE)	0	382	534	44,006
Operating Cost (\$)	10	4,076	5,039	177,785
Fuel Efficiency (miles/GGE)	0	12.9	176.6	185,400

ALD: Insights – A diverse fleet

Inventory Parameter	Min	Median	Mean	Max
Model Year	1938	2010	2006	2018
GVWR	500	5,200	7,451	100,000
Months in Service	1	88	136	772
Miles	0	5,042	6,654	136,907
Fuel Consumption (GGE)	0	382	534	44,006
Operating Cost (\$)	10	4,076	5,039	177,785
Fuel Efficiency (miles/GGE)	0	12.9	176.6	185,400

FY 2017 Inventory Correlation Matrix

Correlation matrix: visualization of relationships between data elements

Dot size and color: magnitude of correlation

FY 2017 Inventory Correlation Matrix

FY 2017 Inventory - Sedans/St Wgns - Correlation Matrix

FY 2017 Sedans/St Wgns Inventory: Fuel Efficiency vs Months in Service

FY 2017 Sedans/St Wgns Inventory: Fuel Efficiency vs Months in Service

FY 2017 Sedans/St Wgns Inventory: Fuel Efficiency vs Months in Service

FY 2017 Sedans/St Wgns Inventory: Cost/Mile vs Months in Service

Looking forward...

- Planned on the FAST side:
 - Review and tuning of business rules
 - Additional ways to look at the data and flags.
- Recommendations for the agency side:
 - Make sure data corrections go back into fleet MIS(s)
 - Review what was flagged... and why
 - Review data-related processes that contribute(d) to missing, invalid, or questionable data
 - Find ways to address those as far upstream and early as possible?
 - Look for ways to highlight questionable data within fleet MIS(s) and review processes?

FAST Program Points of Contact

DOE Federal Energy Management Program

Karen Guerrakaren.guerra@ee.doe.gov

Daniel Robinson daniel.robinson@ee.doe.gov

GSA Office of Government-wide Policy

Patrick McConnell patrick.mcconnell@gsa.gov

Jim Vogelsinger james.vogelsinger@gsa.gov

EIA Office of Energy Consumption & Efficiency Statistics

Cynthia Sirk cynthia.sirk@eia.gov

Idaho National Laboratory FAST Web Team

Michelle Kirby michelle.kirby@inl.gov

Ron Stewart ron.stewart@inl.gov

—) @fastdevs